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The Number of Large Graphs with a Positive Density
of Triangles
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We give upper and lower bounds on the number of graphs of fixed degree which
have a positive density of triangles. In particular, we show that there are very
few such graphs, when compared to the number of graphs without this restric-
tion. We also show that in this case the triangles seem to cluster even at low
density.
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1. INTRODUCTION AND STATEMENT OF RESULTS

In a number of contexts involving large graphs (such as the World Wide
Web (WWW) or Citation Networks) it has been observed that such graphs
contain a large number of triangles, and probably a positive density of
them (per node). We refer to ref. 1 for a detailed discussion. The impor-
tance of topology is also mentioned in ref. 2, where the authors say (p. 41):

“But if the topology of these networks indeed deviates from a random graph,
we need to develop tools and measurements to capture in quantitative terms the
underlying organizing principles.”

On the other hand, it is well known [ref. 3, Chapter IV] that in
several models of random graphs with a bounded number of links per
node the probability of observing a large number of triangles is vanishingly
small when the number of nodes diverges. A natural question is therefore
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to estimate more precisely the number of graphs with a large number of
triangles. It will become clear from the discussion of our paper that this
result is beyond the “large deviation bounds” which are found in the
literature. >

In this paper we study the cardinality of sets of graphs with a positive
density of triangles per node. We consider (random) graphs with sparse sets
of links, i.e., random graphs in which the number of links is bounded by a
fixed constant times the number of nodes. We will consider three models of
labeled graphs:

(G) The model &, , comprises the graphs with » nodes and kn links.
We call them k-general graphs.

(O) The model &, ;. is the set of all graphs with # nodes, and from
each node there leave exactly k directed links (directed from that node). We
call these graphs k-out.

(R) The model ¥, ;.. is the set of all graphs where at each node
exactly k links meet. (This definition is only interesting if k» is even, which
we tacitly assume in the sequel.) These graphs are called k-regular.

A well-studied question is that of the probability of finding triangles
in such graphs, where the probability is relative to the uniform measure on
the set of graphs, giving the same weight to each graph. For all of the
above examples, it is known (see, e.g., refs. 3 and 6) that the expected
number of triangles in these graphs is bounded independently of n, by a
quantity A= O(k*). Furthermore, for each ¢ > 1, it has been shown (see,
e.g., ref. 3, Theorem IV.1) that the probability to find exactly ¢ triangles is
given, in the limit # — oo, by the Poisson distribution

t

A
_ A

Note however, that this limit is not at all uniform in ¢, as will be illustrated
by our results in Section 4. Further studies have greatly refined this result,
giving very precise estimates on the tails of this distribution, as a sort of
large deviation result. A very recent summary of these results can be found
in ref. 6. Our study, in this paper, goes beyond that region, since we ask
for the size of subsets of the three graph families with a positive density of
triangles. We assume throughout that « is a fixed constant « >0 and we
consider those graphs in the above classes which have an triangles (or,
more precisely [an] triangles, where [ x] denotes the integer part of x). We
denote these subsets by %, .. %, kouta> G oren,o- If X is a finite set we
denote by |X]| its cardinality. Our main result is the following
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Theorem 1.1. Fix ke N and a > 0. For the three graph families we
have the bounds (valid when the lower bound is non-negative):

i, %= L (L.1)
-y <limint e

S s l?fgllgf;;:.::lc' < _2k2(50;c+ 1)’ (1.2)
e

< lim sup 108 |%, ireg, o <1 20 L3)

now 108 |G, gl K(k—1)

We conjecture that in the statement above the limits exist (assuming,
of course, that kn is even in the k-regular case).

Remark 1.2. From the point of view of Information Theory or
Statistical Mechanics/Large Deviations, the number of triangles is an
extensive quantity relative to the number of nodes. But the logarithmic
bounds we find are not extensive in the number of nodes: They are exten-
sive and small on the scale (of the logarithms) of the number of graphs.
This suggests that the presence of a positive density of triangles is a very
strong information about the system.

Indeed, imposing that the number of triangles is proportional to the
number of nodes leads intuitively to the conclusion that whenever one
considers two links emanating from a common node, there is a non zero
probability that their ends are also linked.

Remark 1.3. We prove more precise bounds in (3.2).

Remark 1.4. One should note that a k-regular graph is more like a
k/2-out graph (because each link is counted twice).

Remark 1.5. The lower bounds are obtained by constructing graphs
containing complete graphs of maximal size. We do not know whether
these bounds are optimal. If they are, this would mean that complete
graphs are ‘“‘typical” among random graphs with a positive density of
triangles.
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The reader should observe that the lower bound is a little surprising.
Indeed, assume o > 0 is very close to 0. Then, one might expect that since
the density of triangles is very low, they will typically be (edge and node)
disjoint in the set %, ;... (and similarly for ¥, , .. .). For each such
triangle, once one has placed 2 of the 3 links forming it, the third link
is already determined when we close the triangle and thus, under the
assumption of disjointness, only nk—on links can be chosen freely [in the
case of the regular graphs this number is nk/2—an] leading to an upper
bound of n"™*~*". But, our lower bound is larger than that. Therefore we
conclude:

Remark 1.6. In the families of graphs %, .., and %, ;... the
triangles have a natural tendency to coagulate into clusters. In other words,
restricting the random graphs to the subset of those with a positive density
o of triangles automatically implies that we can expect those triangles to
cluster into complete graphs (of size at most k) even if that density « is very
low. Thus, it is statistically “advantageous” for the triangles to coagulate,
even if there are very few of them, as soon as their density is positive.

Another surprising result is that in the case of 4, , , of Eq. (1.1), there
is no loss in the number of graphs on the scale of »”. This might seem all
the more surprising in view of the Poisson distribution of the expected
number of triangles (but can be understood as a consequence of the
diagonal limit ¢ = an — co which we are considering).

Remark 1.7. Most results of this paper deal with graphs with the
same degree k at each vertex. The graphs one encounters in the WWW
have (in- or out-)degrees which differ from node to node and one can ask
how our results would extend to this more general case. It has been
observed (see ref. 2) that the distribution of the degrees satisfies an
approximate power law of the form P(k) = Z 'k~ with y ~ 2.5, Z a nor-
malization and P(k) the probability to find a vertex with k out-links. It is
thus an interesting, but hard, problem, to extend the current work to such
a case of variable degrees. A few calculations, using the clustering tech-
niques of Section 4 as a guideline for orders of magnitude, leads us to
conjecture the following picture: Without further restrictions, the probabil-
ity to find a density of triangles among all graphs seems to be of order one,
provided one allows for complete graphs of size O(n'/?) to appear (and
perhaps imposing a condition like y < y*). This mathematical statement
implies the occurrence of a density of triangles in a graph with variable
degrees. Note, however, that this density seems to be due only to the pres-
ence of these giant complete graphs. For the case of the WWW this would
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mean that the whole density of triangles would have to come from about
n'/3 “phone books” with n'/? links each, all of which basically only connect
among themselves. This seems unreasonable. Therefore, we conjecture that
the observed density of triangles in the WWW is either a man-made
feature, or can be captured through a more constrained probabilistic model
(perhaps taking into account human behavior).

The paper proceeds from the k-regular graphs via the k-out graphs to
the k-general graphs. We prove first upper bounds and then the (easier)
lower bounds.

2. UPPER BOUND FOR k-REGULAR GRAPHS

This section should be considered as a warm-up for the next one.
Therefore, many arguments are sketched, and the reader can find longer
explanations in the next section. On the other hand, the general line of
proof should be more transparent. The reader will also notice that the
k-regular case is much less delicate than the k-out case.

We assume that nk is even because otherwise there are no k-regular
graphs. For a k-regular graph, the general bound is®:

|gn, k-regl x C(k)n nnk/z‘ (21)

A given link cannot be an edge in more than k—1 triangles, because exactly
k links meet at each node (see also Lemma 3.3). For every link we say that
it is s times occupied if it occurs in s triangles, and every triangle occupies
(in this sense) 3 links. Thus the total occupation number is 3an, and there-
fore the number of links involved in edges of triangles is at least
3an/(k—1) (and at most 3an). We next bound the number of ways to draw
an triangles. Label the nodes, and for every node i let ¢, be the number of
triangles having i, j, m as corners with i the smallest of the three indices.
The number of ways to choose the ¢, is

<ocn+n—1><2(a+1)n’ (22)
n—1

which is negligible on the scale we consider. With the ¢, fixed, we draw the
triangles at i = 1, 2,... . Note that in this process we will have to place at least
£=73an/(k—1) links. Now, if we draw a triangle, several things can
happen. FEither the triangle is already drawn, because its 3 sides have been
placed as sides of triangles which have been drawn earlier. No link needs to
be placed in this case. In all other cases, between one and 3 links need to be
drawn. The least favorable case occurs when 3 links have to be placed.
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Then, there are at most n(n— 1) possibilities to choose the first 2 links and
then at most 1 possibility for the third, and we get a factor of n'~1/¥ per
link. If only one new link is used, and it starts at i (and the two others are
already there), there are at most k? possible endpoints for that link and we
get a factor k%n!~! in this case. If the one missing link is between two links
(which are already there when this link has to be placed) we get at most
k(k—1) n°/2 possibilities. Finally, if two links are missing, there are 2 pos-
sibilities: Either it is two links starting at i, and this makes at most
nk = kn>~' ways, or one link starting at i and one not starting at i which
makes at most nk = n>~'k possibilities. Indeed, there are n possibilities to
choose the end j of the link starting at i and then there are at most k pos-
sibilities for choosing the second link. Once two links are chosen, the
triangle is completely determined since all its nodes are fixed.
Thus for all these links we get a bound of at most

Kt 2.3)

possibilities, that is, k’n*> per link. Finally, the remaining kn/2—¢ links
can be put in at most n*/2~* ways. Summing over the possible number of
links (which is bounded by 3an/(k—1) < ¢ < 3an and yields a factor which
can be easily absorbed), and combining the two bounds, we get a bound

Cnnkn/2—3zxn/(3(k—l)) — Cnnkn/Z—atn/(k—l). (24)
This completes the proof of the upper bound of (1.3). |

Remark. A second proof could be derived from a modification of
the proof for the case of k-out graphs which we give later.

3. AN UPPER BOUND FOR k-OUT GRAPHS

In this section, we consider the set &, , . of graphs where each node
has k out-links. The cardinality of this set is

n—1\"
9, = . 3.1
| n,k—outl < k > ( )

In other words, we allow for links which go back and forth between 2
nodes, but we do not allow double directed links in the same direction
between 2 nodes. Also self-links (loops) are forbidden. We denote by
%, r-ou.« the subset of ¢, , ., with [an] triangles, where triangles are
counted as follows: Once the links are placed, their orientation is neglected
and unoriented triangles are counted, including the multiplicity of the edges
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(which can be 1 or 2 by what we said above). For example, 3 nodes with
the possible 6 directed links between them count as 8 = 2? triangles. By and
large, these distinctions are not very essential for the proofs we are going to
give and other choices will work with similar proofs.

Since, for fixed j, one has

(m—j+1)j<<m><ﬂj

J! i/ iy

we see that, for fixed k,

. logl|¥,
llm Og | n, k—outl — k,
n— o n log n

which we will sometimes write in the more suggestive form
k
Ign, k-outl ~ nn .

To be more precise, we define the notation F(n) ~n™ to mean that there
are constants C; > 0 and C, independent of n (but not of k) such that

Cin™ < F(n) <Cin™, (3.2

so that the error term in the limit is subexponential. Another way to say
this is

10g |%, koul = n(k log n+O(1)).

Define

1
o) = Sk 1)

Proposition 3.1. There is a C = C(a, k) < oo for which the quantity

|%,. k-out, «| Satisfies an upper bound of the form

|%,, ko, o] < Cn"*- 20, (3.3)

Remark 3.2. This is the upper bound of (1.2).

To avoid the notation [an], we assume henceforth that on is an
integer. We consider a configuration with an triangles. The triangles which
can occur in a k-out graph are of two types, which we call type R (for
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Fig. 1. “Round” and ““frustrated” triangles. In the first case all links “follow each other”
while in the second there is a “reverse” (frustrated) link, the link ¢. The corner with a circle is
called the anchor of the triangle, and the links are then labeled in such a way that for a round
triangle the a link leaves the anchor, and the others follow in order, while for the frustrated
triangles, the a link leaves the anchor and the b link leaves the end of the a link. These rules
determine a unique labeling of each triangle if we require the anchor for the round triangle to
be at the node with lowest number.

round) and type F for (for frustrated) depending on the relative orientation
of the links. See Fig. 1.

We next consider the number of triangles in which a given edge can
occur. Because of the k-out model, edges of type b can occur in arbitrary
many triangles of type F, by just connecting 2 lines from any node to a
given edge. In this respect, the k-out model is more complicated than the
k-regular model. However, the other lines can occur only in a small number
of triangles.

Lemma 3.3. Bounds on the number triangles per link:

— A link can be an edge of type a in at most k triangles of type R and
in at most k— 1 triangles of type F.

— A link can be an edge of type b in at most k triangles of type R.

— A link can be an edge of type c in at most k triangles of type R and
in at most k— 1 triangles of type F.

Proof. Consider first the case R. The edge a can occur in at most k
triangles. To see this, note that once a is placed, there are k edges of type b
leaving its end, and then the triangle must be closed, so there are at most k
such triangles. Since R is round, the same reasoning can be done for the
other edges. In the case of a triangle of type F, we have already remarked
that there is no bound possible for the link b, but we claim the others
cannot be part of more than k—1 triangles of type F. Indeed, once link a is
fixed, we need to choose another out-link to become link ¢ (and then the b
link is fixed). This gives k—1 as a bound. Finally, link ¢ can belong only to
k—1 triangles of type F because for fixed ¢ there remain only k—1 candi-
dates for the edge of type a. |
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An important consequence of Lemma 3.3 is that the number of edges
belonging to at least one of the an triangles grows proportionally with an:

Lemma 3.4. The number of edges £,,, belonging to at least one of
the an triangles in a graph of type ¥, ;... is bounded by

°2‘—Z < Liing < 3001, (3.4)

Proof. The upper bound is obvious. To prove the lower bound, note
that every triangle involves a link of type a. Since there are k links leaving
from the far end of that link, the number of triangles for which this link is
an a link is bounded above by 2k (k of type F and k of type R). Thus, at
least 37 links are needed just to draw all a links. ||

Remark 3.5. Note that an a link can be also a b or ¢ link for many
other triangles, and so the above argument cannot be easily improved.
When k=2 and n =3 the complete graph forms 8 triangles, but needs 6
links, instead of the 4 as given by the lower bound. For complete, directed,
k-out graphs the asymptotic bound for k — oo is 2.

To prove the bound of Proposition 3.1 we give an algorithm which
constructs all the graphs with an triangles, and perhaps a few more with
more triangles, and we bound the number of ways in which this can be
done.

To enumerate all the cases, we first label the nodes in an arbitrary
fashion from 1 to n. Once this is done, we consider any configuration with
an triangles. We associate each triangle with a node as follows: Triangles of
type F are associated with the node from which the a and ¢ links originate.
For triangles of type R we label the edges in such a way that the corner
where the a and the ¢ edges meet has the lowest label among the 3 corners.
We call the point from which the a link leaves the anchor of the triangle.

Once this is done, there will be ¢; triangles anchored at node i, for
i =1,..., n. Furthermore, we denote by v; the number of links arriving at
node i once the graph will have been completely constructed. Both t; and v,
indicate the values at the end of constructing the graph.

In order to construct all possible graphs with an triangles, we start by
choosing the #; and the v,. Clearly,

Y t; =an, (3.5)
i=1
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and therefore the number of ways of choosing the #; is bounded by

-1
A— <O(n';(_nl )><2(a+l)n. (3.6)

The v; satisfy Y_; v; = kn, since each link arrives somewhere. The number of
ways to distribute the ends of the kn links is therefore bounded above by

B <kn+(n1— 1)> <26+, 3.7)

n —
We will need the following

Lemma 3.6. The product of the v; + k satisfies

n

T @ +k) < (2k)". (3.8)

i=1

Proof. Since the sum of the v, +k equals 2kn, the maximal value of
the product is (2kn/n)". |

Thus, once the ¢; and v; are fixed, we have lost a (negligible) combina-
torial factor Cf, with Cy < 2****%(k+1).

Lemma 3.7. At each node, at most k£ round triangles and at most
k(k—1) frustrated triangles can be anchored.

Proof. Consider first the round triangles. There are k£ outgoing links
from a given node, and from each of their ends there are another k out-
going links and then the triangle must be closed, and so there are at most
k? round triangles. For the frustrated triangles, we first choose a pair of
outgoing links and then the direction of the link connecting their ends. ||

Having fixed the ¢;,, v;, we now place the triangles starting with all
those anchored at node 1, proceeding to node 2, 3, and so on, until we
arrive at node n. At each node i we construct first all the F triangles and
then all the R triangles. Assume the first s—1 triangles have been drawn,
and assume we are placing the next triangle anchored at node i. We will
first make a choice of which links of the new triangle are assumed to be
present. This gives 8 = 2* choices. There are 2 more choices between type F
and R, (in fact less since we insist on building first all the F before the R).
For each of these choices, we bound the maximal number of ways a
triangle can be placed. We call these bounds F; for the frustrated triangles
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and R; for the round triangles, j = 1,..., 8. An upper bound on the number
of ways to place a triangle (given its anchor) is then

16 max(F,,..., Fy, R,,..., Rg).

When we construct a triangle at 7, it will be denoted by its corners
(i, j,m). If it is round its links are a =ij, b = jm, and ¢ = pg with p =m,
g =i. If it is frustrated, its links are a =ij, b = jm, and ¢ = pg with p =1,
qg=m.

The 16 cases are represented in Table I. The second column indicates
which links are new in forming the triangle, and the next the number of
these new links. The next two columns indicate the maximum number of
ways the given case can appear. The last column will be explained later.

Proof of Table I. To prove the bounds on the multiplicative factors
is just a verification. We indicate a few cases to guide the reader. In case 1,
we place 3 links of which 2 can be chosen freely (the a link and then the b
link), whereas the third link is then completely determined. Therefore, we
get a factor (n—1)(n—2), for both types of triangles, and we bound this by
n® In case 2, the c link is already present. For a round triangle there are at
most v; possibilities for a ¢ link to end in i. The a link can be chosen in »
ways, and the b link must connect the end of a to one of the ¢, and this can
be done in v, ways. Thus we get a factor nv,. In the case of the frustrated
triangles, there are only k—1 possibilities for the ¢ link (which now origi-
nates at i) since one link is used as the a link: The factor is therefore at
most nk. All other cases are discussed similarly, for example, in case 7, the
¢ link is missing, but the a and b links are present, and there are k possible
ends for a and another k possible ends for each of the b attached to a.
Finally, we explain case 4 which is the critical case. In it, the b link and the

Table |
case new links # links = dq R F min. gain
1 abc 3 n? n? n!
2 ab 2 nv; nk (v;+k)n™!
3 ac 2 nk nk kn™!
4 a 1 n n 1%
5 bc 2 nk nk kn™!
6 b 1 ks, K (v +k)>n!
7 c 1 k? k? k*n~!
8 none 0 k? k? k%
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¢ link are given. Since one link cannot be placed in more than n—1 ways,
the factor »n is an upper bound. Finally, the last column of Table I is cal-
culated as follows. Its entry is an upper bound on the sup of the R and F
column, divided by n*k |

To explain the proof of Proposition 3.1 we will first consider the
simpler situation where the cases 4 and 8 do not appear. Indeed, in these
two cases, the combinatorial factor of the last column in Table I is not
small when # is large. In this simplified case, each time we place a triangle,
the number of links increases by dg and the number of possibilities is
bounded by

16n°n=" (v, +k)>.
Since 1 < dq < 3 we can bound this from above by
16n%0 =13y, + k)2,
From Lemma 3.4, we know limits on £;,,,, so that 3’ (dq) = £y, and

Liiang € [an/(2k), 3an]. We get, in the end, for constructing at least an
triangles with £;,,, links, an upper bound of

16 n w3 TT (v, +k)*.
i=1

The last factor is obtained by observing that there are at most k2 +k(k—1)
triangles anchored at a given node by Lemma 3.7. Placing the links not
involved in making triangles gives at most a factor »n per link, and there-
fore, using also Egs. (3.6) and (3.7), we get an upper bound

nnkn —Zmang/32(zx+ 1) n1 6(xn2(k+ 1) n(2k) n4k2.

The sum over the possible values of £,,, is bounded by 3an times the
largest contribution (which occurs for £,,, = an/(2k)), and we get a bound

3o - Cp =@ D 3.9
with
C = 16%2%+D(2k)*.

What about the starred cases? As is visible from Table I, there is no
gain in the cases 4 and 8. Since we count everything in terms of links, the



Number of Large Graphs with a Positive Density of Triangles 935

case 8 is harmless: We have no gain, but we also place no link. Thus the
bad case is 4. We will show that case 4 cannot occur too often, and thus a
fixed minimal proportion of the cases will give a gain.

In the case 4 (for a frustrated triangle) we are in the process of
drawing a triangle in which only an a link is missing. In this case, we
observe the “history” of the ¢ link. Note that the ¢ link originates at i, but
its other end has an index m which can be greater or less than i. We
distinguish several cases:

(F1) m>i: Then there are 2 subcases.

(Fla) The link i —» m was placed when a triangle anchored at some
node i’ <i was formed. Then it must have been placed as a b link.

(F1b) The link i » m was placed when another triangle anchored
at i was formed. Since we begin with the frustrated triangles, this must have
been a frustrated triangle. Note, however, that when the first frustrated
triangle at i is being placed, this case cannot occur and we must begin with
the case Fla (or with a case other than case 4).

(F2) m < i: There are 4 subcases:

(F2a) The link i -» m was a b link when it was placed.

(F2b) The link was placed as a ¢ link of an R triangle anchored
at m.

(F2c) The link was placed as a ¢ link of another F triangle
anchored at i.

(F2d) The link was placed as an a link of another frustrated
triangle anchored at i. Note, however, that when the first frustrated
triangle at i is being placed, this case cannot occur and we must begin with
one of the cases F2a—F2c (or with a case other than case 4).

In the case 4 (for a round triangle) we complete a round triangle with
a missing a link. In this case, we observe the “history” of the b link. There
is only one possibility:

(R) The b link of such a triangle will connect nodes j — m with both
j and m greater than i. Therefore, it can only have been placed as a b link
when we constructed a triangle anchored at a node with label i’ <i.

To keep track of the conditions mentioned above, we introduce counters
which “distribute” the gain which comes from placing a b or ¢ link onto
those further uses of this link in case 4, where no gain is possible. To do the
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bookkeeping, we introduce for every link ij a counter c;;. Each of these is 0
as we start the inductive procedure to be described below:

€50 =0,

for all i # je {1,..., n}. If a link ij is placed for the first time and it is a b
link or a ¢ link as it is placed, we set c¢;; = 2k—2. Each time a link ij is used
as a ¢ link in one of the cases Fla or F2a—F2c (and only in those) the
counter c;; is reduced by one. The maximal number of uses in Case 4 of a
link placed originally as a b link is 2k—2 (used k—1 times for the ¢ link
of an F triangle and another k—1 times for the b link of an R triangle).
Similarly, a link placed as a ¢ link can be used in Case 4 another £ —2 times
as a ¢ link in an F triangle. Since the number of uses is less than 2k—2,
none of the counters c;; will ever become negative.

Our last counters keep track of the occurrence of the number of times
we are in case F1b or F2d at a given node i. At the beginning of the induc-
tion, we set g, , =0 for all i e {1,..., n}. Each time we encounter a case
among 1-3, 5-7, Fla, F2a-F2c, or R, at node i, we increase a; by k. Each
time, we encounter case F1b or F2d, we decrease @; by 1. Note that since
these latter cases cannot occur more than k& times, and they can not occur
for the first triangle at node i, we conclude that none of the counters a, ever
becomes negative.

We now prove recursively that at any given step of the construction
after adding triangle ¢, we have a bound on the total number of possibilities
which is of the form

t
N, <nq,(l—ﬂ)n—azm.cm,t/(k—Z)n—QZsas/k n (16(015 +k)2), (3.10)

s=1

where g, is the number of links already drawn, i is the number of the node
at which the sth triangle is anchored and ¢ >0, f>0, and ¢ > 0 will be
given later on. If we can show that there is a positive B for which these
inequalities hold, then we have shown a bound of the type of Proposition 3.1,
since none of the counters ever becomes negative.

The recursive proof starts when there is no link and all counters are
equal to 0, hence the bound is trivially true, (N, = 1).

We now explain the action at node i. During the construction of the
triangles anchored at i, some counters will be updated, and the bound on
the combinatorial factor will evolve correspondingly. We now inspect the
evolution of the bound during the different possible actions taken at step i.
Assume that 7—1 triangles have been placed, and that we are placing now
triangle ¢ which is anchored at i, =i.
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Case 1. According to column R or F of Table I, we have
N, <N,_n’.

But according to the second and third columns of Table I, the number of
links increases by 3, thus ¢, = ¢,_; + 3. The link jm was empty at time ¢z —1
and will be filled at time . Therefore, c;,, ; =0 and ¢;, , =2k—2, and
similarly ¢, ;7,1 =0 and ¢, ;,=2k—2. Finally, a;,,=a,, ,+k. The
other counters are unchanged. Therefore, we find

n2.po%m -1 /(2k—2)n—00[m, i]‘t—l/(Zk—Z)n —a; 1—1/k

< 0B =6 o/ k=2 yy—ocim o/ k=2 —eai [k 2301 =)+ 2+e (3.11)

where [m, i] =mi or im according to the orientation of the link (R or F
case).* Since g, =q,_,+3, we see that N, satisfies the inductive bound
provided the last factor in (3.11) is < 1, which is the case if

1>38+20+o0. (3.12)

Case 2. Two new links (an @ and a b) appear and the combinatorial
factor is max(nv;, nk) < n(v; + k). The counter c,, is increased by 2k—2 and
the counter g; is increased by k. Also, g, =¢q,_, +2. The bound analogous
to (3.11) is therefore

n(v. +k) - OCm -1/ (k=2) yy—eai 1 [k
1

< n20=B =t /=2 e [y 1 =20=P)+a+e(y 4 k),

which proves the inductive assumption if

1>2p+0+0. (3.13)

4 Note that
—0Cjp -1/ (2k—=2) = —0c,, [ (2k—2) +o0,
and also
—0Cpn 121/ (2k=2) = —acy, ../ (2k—2)+ 0,
and this exactly compensates the factor n?. Similarly,
—oa;, 1 /k=—oa, [k+o,

which compensates the factor n¢ at the end of (3.11).
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Case 3. The counter ¢, ;; is increased by 2k—2 and g, is increased
by k, and the inductive bound is

nkcn~o¢tm i1, 1-1 /(2k*2)nfgﬂi, —1/k

< n20P p=oetm i/ Ck=2) y—eai, [k 1 =20 =P o+e(y 4 o),

which proves the inductive assumption if (3.13) holds.

Case 5. The counters c;, and c,, ;; are increased by 2k—2, and g, is
increased by k. Therefore,

nkc - noCm -1/ @k=2) yy—ocpm, i1, -1/ (2k=2) yy —ea -1 /k

< n20P y=em. i/ k=2 ot 1,0/ Q=D —ai. [k 1=20=P+20+e(y 4 oY,

which proves the inductive assumption if
1=284+20+0. (3.14)

Case 6. The counter c,;, is increased by 2k—2, and g, is increased
by k. Therefore we get

no(v,- +k)2 . n_ac[jm],t—l/(Zk_z)n_gai,t—l/k

< nl P poetim i/ k=2 peai [k =(=Prrote(y | k)2,

which proves the inductive assumption if
1=p+0+0. (3.15)

Case 7. The counter c, ;; is increased by 2k—2, and g, is increased
by k. Therefore we get

n%2 . poctm it -1/ Ck=2) y —ea; 1 /k

< ' Ppoctn i Q=D y—ean [k =A=prrore(y | k)2,

which proves the inductive assumption if (3.15) holds.

Case 8. This case occurs if we want to draw a triangle anchored at i
which has appeared in an earlier phase of the construction (for example, if
its sides are all sides of type b from triangles anchored at i’ <i). In this
case, no new link, but 1 new triangle and a factor appear

K> < (v, +k)2,



Number of Large Graphs with a Positive Density of Triangles 939

and the inductive assumption evidently holds, since only the number of
triangles increases, but not the number of links.
The conditions we require so far on 8, g, and g are all satisfied if

1=384+20+0. (3.16)

We now come to

Case 4. Whenever one of the subcases Fla, Flb, or F2a-F2c
applies, the link i — m was placed earlier as a b or a ¢ link, and we decrease
the corresponding counter c;,, by one unit, and in the case R the counter
¢ is decreased. The counter a; is unchanged in these cases. Therefore, we
find that

n-n - omili-1 /(k—2) < nlfﬂnﬂrqm, ,-]’,/(k72)nﬁfa/(2k72)’
and this proves the inductive assumption provided
B<o/(2k-2). (3.17)
The remaining cases are F1b and F2d. In these cases the counter «;

becomes useful: It is decreased by 1 and all other counters are unchanged.
Therefore, we get

n-n-i-1/k < nl—/i‘n—eai,t/knﬂ—e/k’
and the inductive assumption holds provided
p<o/k. (3.18)

We have now discussed all cases. It remains to see that the constants
B, o, and g can be chosen consistently. They have to satisfy (3.16), (3.17),
and (3.18). We find that the optimal solution is

0=kpB, o=02k—-2)p, and 1=35+22k-2) f+kp.

Thus, we find

1

ﬁ=2k(5k+1)’

and the proof of the inductive assumption is complete.
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Recall that to draw ¢ triangles we need at least ¢/(2k) links, and no
more than 3¢ links. We therefore conclude (combining the bound on N,
with (3.6) and (3.7)) that the number of graphs with ¢ triangles is bounded
by

2
3¢- 16t2t+nnnk—ﬂt/(2k)2(k+1)n(2k)n(2k —k)’

where the last factor follows from (3.10) and the observation that the
number of triangles anchored at a node is bounded by 2k*—k by Lemma 3.7.
The proof of Proposition 3.1 is complete. ||

4. A LOWER BOUND FOR k-GENERAL GRAPHS

Here, we consider the class ¥, , of graphs with » nodes and krn links
which can be placed anywhere we please. (This model is close to the well
known model G, , where any of the links is chosen with probability
p=2k/n)

Lemma 4.1. Fix any a > 0. The number of graphs with an triangles
in the class of graphs with » nodes and kn links is (for large enough ») at
least

_ 2/3 _ 2/3
|gn,k,a|>e ot )n (@) |gn,k|'

Remark 4.2. This is clearly much larger than the bound of Propo-
sition 3.1, and almost as large as n™, in fact

1
lim 08 Fnkal _
now nlogn

This also proves (1.1), since

(DN
lg"’k|_<nk>~n .

Proof. Among the n nodes choose a'/*z!'/3. This can be done in

n
() w

ways. (Here and throughout the proof we do not worry about the integer
parts.) With these nodes we build a complete graph, this consumes about



Number of Large Graphs with a Positive Density of Triangles 9N
a?*n*/ links and gives an triangles (and it can be done in 1 way). Now
among the remaining n—a'/>n'/> nodes distribute the kn—a?°n?/* links
so that there is no triangle. The number of ways this can be done can be
estimated from below using the well known result on the number of graphs
without triangles (see ref. 3), namely this number is bounded below by

(n «1/3n 1/3) /3 " ()
—0(n on)? 2
(9(1)<kn_a2/3n2/3>>e e <nk> (4.2)

Combining (4.1) and (4.2) we get the lower bound. |

Remark 4.3. In some sense, this result can be viewed as a comple-
ment to the large deviation results of Vu,® see also ref. 5. Consider the
polynomial associated with triangles in a graph with » nodes:

Y = Z Liitint o

ij*jm
I1<i<j<m<n

For this polynomial (in the case of the model ¢, , where links appear with
probability p = k/n) one has

EY)=0(1), E@¥)=0n",
with E the expectation in the random set. Taking Theorem 1.1 in ref. 4 and

choosing A = 0(a'/*n'/?) one gets an upper bound of the form

1/3 1/2

P(Y|=an) <e 9.

Note that this is consistent with the lower bound of Lemma 4.1.

5. ALOWER BOUND FOR k-OUT GRAPHS
(AND FOR k-REGULAR GRAPHS)

Consider the graphs 4, , . which are of type k-out. Recall that

|gn, k-oull ~ nn .

We will consider graphs #;,,; which are complete in the sense that there are
k+1 nodes, and from each node k out-links are leaving (to another node
of #;.,). Counting in this case gives k+1 nodes, k(k+1) links (one for
each direction) and 8(*%") triangles (the factor 8 accounting for the 8 ways
to use the 6 links on each triangle, one back and one forth for each pair of
nodes).
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We now distribute the an triangles into’

an
Co=—re
8("1H

disjoint complete graphs 4, ,, and this leaves

on

R,=n—(k+1)———
D5

nodes which will not have been used when making the complete graphs of

type H#;,,- All links originating from the nodes of the clusters are used up

in forming the ., ,. The number of ways to place the C, complete graphs

is

<om(k+1)>'
" 851 ~ no, (5.1)
ocn(k+1) (k_i_l)!an/(g(k;l))( on >|
8(*3h) 8(“1H
with
an(k+1 on
0, = (k+1)

81 8(*1Y)

The first factor in (5.1) counts the number of ways to choose the nodes
involved, and the quotient counts the number of ways the (k+1) C, nodes
are grouped into clusters of k+1 each. Since the graphs use k links per
node, the graph we can construct with the remaining R, nodes will be
disjoint from the C, clusters, and we want to bound the number of ways
in connecting the remaining nodes without adding any triangles. A lower
bound on the number of such graphs is obtained by constructing again a
k-out bi-partite graph on the remaining R, nodes.

The number of ways to place the remaining links is therefore bounded

below by
R 2 n
< n / > Sn ,

*To simplify the discussion, which is in terms of orders of magnitude, we assume that all
quotients are integers.
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with

S =k (n_ocn(k+ 1)>.

8(*1")
Note that we do not insist on making a connected graph. So we find a
lower bound of E"n™, where E depends only on k and

60
 8(k+1) k(k—1)

3a 1 3a

Remark 5.1. The above calculation proves the lower bound for
(1.2). The lower bound for (1.3) is an easy variant, observing the fact that
instead of 8 triangles in a complete graph on 3 nodes in the k-out model
there is only 1 in the k-regular model.

1:,=Q,,+S,,=n<k (k(k+1)—(k+1)+1)>
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